Evaluation of the Ultrasonographic Features of Renal Lymphosarcoma Tumor in Cats

Siamak Alizadeh*, Kaveh Azimzadeh

Department of Clinical Sciences, Faculty of veterinary medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.

Abstract
Objective- In this study, ultrasonographic characteristics of lymphosarcoma in cats and also the role of fine needle biopsy were evaluated.
Design- Retrospective study.
Animals- five cats with renal lymphosarcoma tumor.
Procedures- After each of these cats was referred to the radiology department, ultrasound was performed by the radiologist from the abdominal cavity and renal symptoms was reported.
Results- In the evaluation of ultrasonography, pelvis dilatation was observed in all cats. In 4 of these cats kidney cortex were not distinct from its central section, enlargement of the kidney in 4 cases, deformed kidneys in 3 cases, decreased echogenicity of the kidneys in 3 cases and kidney echogenic increased in 2 cats were observed. In 95% of cases, lesions were bilateral. Biopsy of the kidneys was performed by fine needle aspiration in 4 cats and in the initial evaluation, the diagnosis was given in 3 cases (86%). In two cats, the diagnosis of temporary cytology was given from round neoplasia cells; in one cat, lymphosarcoma was confirmed by second aspiration and in another cat was biopsied from the tissue center. In one case, the diagnosis was followed by a necropsy.

Conclusion and Clinical Relevance- The findings indicate that the signs of ultrasound of the kidney lymphosarcoma in cats may not be highlighted, and in cases of high ultrasound characteristics, differential diagnoses should be considered. Also, biopsy for cytological tests by fine needle aspiration can be valuable in diagnosing this disease.

* Correspondence to: Siamak Alizadeh, Department of Clinical Sciences, Faculty of veterinary medicine, Urmia Branch, Islamic Azad University, Urmia, Iran. E-mail: s.alizadeh01@yahoo.com

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.
DOI: 10.22034/IVSA.2019.163627.1170
1. Introduction

Lymphosarcoma (lymphoma) is one of the most common cancers diagnosed in most breeds of cats. It is a cancer of the lymphocytes (a type of blood cell) and lymphoid tissues. Lymphoid tissue is normally present in lymph nodes, spleen, liver, gastrointestinal tract and bone marrow. Lymphosarcoma can be divided into several forms, which depend upon the primary (predominant) site of the tumor. Some cats have multiple sites of involvement and do not fit well into just one category. These are usually animals with very advanced disease. The kidneys may be the primary sites of involvement. Cats that have this type are often seen because of signs related to kidney failure (increased thirst, increased urination, loss of appetite, vomiting). A biopsy (tissue) or cytology sample is required in order to make a diagnosis of lymphosarcoma. In some cases, it can obtain a diagnosis without surgery. However, in some cases, we may need to perform a surgical biopsy to obtain adequate tissue to confirm the diagnosis. The ease with which a diagnosis can be made depends upon where the tumor is located. A complete evaluation of a cat suspected of having lymphosarcoma includes a search for tumor in other locations. A complete blood count (CBC), a serum chemistry profile, urinalysis and FeLV/FIV testing are always performed and provide important information regarding the effects of the cancer on body functions as well as the ability of the patient to handle chemotherapy. An abdominal ultrasound (sonogram) allows us to evaluate the liver, spleen, internal lymph nodes and intestinal tract for possible tumor involvement. Chest x-rays allow us to look for internal lymph nodes, lung involvement, an enlarged mediastinum or fluid around the lungs. A bone marrow aspirate allows us to look for tumor cells in the bone marrow as well as to evaluate the marrow's ability to produce normal blood cells. At the time of this report, little published information could be found on the ultrasonographic characteristics of feline renal lymphosarcoma.

Thymidine kinase (TK) is known as cytoplasmic enzyme involved in phosphorylation of deoxythymidine to deoxythymidine monophosphate as part of the major one-step salvage pathway in synthesis of pyrimidine. TK includes in both cytosolic (TK1) and mitochondrial forms (TK2). TK1 is related closely with proliferation of cells, and its activity may be linked with degree of DNA synthesis and correlated to the rate of proliferation of cells, which especially is high in hematopoietic malignancies. Determination of serum TK1 (sTK) activity possesses various applications in human clinical oncology, such as early detection of malignancy and monitoring of response to treatment. TK activity has also been evaluated in canine and feline oncology where levels have been assigned to reflect clinical stage of lymphoma and lymphosarcoma, as well as prognosis, and prediction of relapse prior the improvement of clinically detectable disease.

The purpose of this retrospective study was to provide additional information regarding the ultrasonographic appearance of feline renal lymphosarcoma, suggest ultrasonographic description criteria, and evaluate the role of fine needle aspirate cytology in diagnosis of this disease.

2. Materials and Methods

Five domestic short hair and native cats with renal lymphosarcoma tumor including 3 female and 2 male with an average age of 7.9 years were investigated. After each of these cats was referred to the radiology department, ultrasound was performed by the radiologist from the abdominal cavity and renal symptoms was reported. The ultrasound device that was used for ultrasonography was EUB-8500 XP (Hitachi Medical Corporation, Tokyo, Japan) and a linear probe with a frequency of 8-10 MHz frequency was selected depending on the size of the patients, and sagittal images of the kidneys were acquired. Criteria for inclusion were a definitive histological and/or cytological diagnosis of renal lymphosarcoma, and cats were required to have evidence of renal function.
impairment at presentation (polyuria/polydipsia, or clinicopathologic findings such as elevated creatinine or isosthenuria), or in which the largest tumor burden was determined to be renal by imaging or at necropsy. Cats were required to have at least one abdominal ultrasound examination performed at the referral hospital at the time of presentation, and the images needed to be available for review. Information recorded included signalment, renal values, any administration of fluid therapy prior to imaging, ultrasonographic findings, diagnostic method of lymphosarcoma, and complications of renal sampling. Ultrasound images of the kidneys were retrospectively reviewed by a board certified veterinary radiologist and classified based on presence or absence of the following: parenchymal lesions (unilateral or bilateral), renal enlargement (unilateral or bilateral), deformed shape (unilateral or bilateral), pyelectasia (unilateral or bilateral), degree of pyelectasia for each kidney (defined as grade I, up to 0.5 mm in width; grade II, between 0.5 and 1.5 mm; and grade III, more than 1.5 mm), loss of corticomedullary distinction (unilateral or bilateral), hypoechoic nodules (defined as well defined round hypoechoic lesions less than 0.5 cm in diameter), hypoechoic masses (defined as well defined lesions greater than 0.5 cm), hypoechoic areas (defined as nonround, nonwell defined hypoechoic lesions), hyperechoic lesions, and perirenal and/or subcapsular lesions (defined as abnormalities not considered to be retroperitoneal fluid). To evaluate kidney enlargement, its length can be measured on the sagittal axis, or its size can be obtained based on the ratio between the kidney length and the diameter of the aorta, which in the enlargement of the kidney, its length will be nine times the diameter of the aorta.

Thymidine kinase 1 and lactate dehydrogenase assay:

TK1 and lactate dehydrogenase (LDH) activity were assayed in 10 cats with renal lymphosarcoma tumor and 10 clinically and paraclinically healthy cats. The TK1 activity was measured by commercial kit (OwjAzmaPlast Co. Tehran, Iran) based on ELISA technique. Serum LDH activity was detected by spectrophotometric method (Spekol, 1500) (Pars Azmoon Co Kit. Tehran, Iran). p value was set as 0.01.

3. Results

Abdominal ultrasonography determined bilateral renal lesions in four cats, and one cat was affected unilaterally. Parenchymal lesions were seen in four cats; abnormalities were bilateral in three and unilateral in one cat. Parenchymal lesions were comprised of loss of corticomedullary distinction, parenchymal hypoechoic lesions, renomegaly, and renal deformity. In four cats renomegaly was present; 3 cat had bilateral enlargement and 2 cat had unilateral enlargement (one left kidney and one right). The kidneys were bilaterally deformed in 2 cats and unilaterally deformed in 2 cases. Pyelectasia was observed in all cats, and was bilateral in four cases; these were classified as grade I (n = 2), grade II (n = 1), and grade III (n = 2). Loss of corticomedullary distinction was present in 4 cats. In five the abnormality was bilateral and generalized, and in 4 cat it was unilateral (of which it was generalized in 1 cat and focal in 3 cats). Three cats had hypoechoic lesions. These consisted of hypoechoic nodules, hypoechoic masses, and hypoechoic areas (Figure 1). A unilateral lesion (a hypoechoic mass) was present in one cat and bilateral hypoechoic lesions were present in 2 cats. Of these 5 cases, 4 cats had at least one hypoechoic mass (two bilateral, two unilateral), 4 cats had at least one hypoechoic nodule (two bilateral, two unilateral), and 5 cats had bilateral hypoechoic areas. Only 2 cats were found to have hyperechoic lesions; one had a focal area of medullary hyperechogenicity and the other a poorly marginated area of hyperechogenicity affecting cortex and medulla on the cranial pole, and both were focal and unilateral. Perirenal and/or subcapsular lesions were
not observed on initial ultrasound in any cats. Other abdominal ultrasound findings included enlarged lymph nodes, consisting of medial iliac, renal, and paraaortic, medial iliac only, renal only and mesenteric only, splenic nodules, hepatic nodules, thickened gall bladder wall hypoechoic externally and hyperechoic internally, minimal to mild ascites, hypoechoic pancreas, thickened small intestinal wall, rectal mass, minimal retroperitoneal fluid, and hyperechoic perirenal fat. In 3 cats, ultrasound revealed mild abnormalities: grade I pyelectasia, mild renomegaly and focal loss of corticomедullary definition in one cat; grade I and grade II pyelectasia in another (Figure 2), and grade I pyelectasia, focal loss of corticomедullary definition and hyperechoic areas in the medulla in the last. In one cat, initial ultrasound revealed only mild renal enlargement, focal loss of corticomедullary distinction and grade I pyelectasia, findings compatible with nonspecific nephropathy. One month later, persistent erythrocytosis and development of azotemia led to further investigations and a second ultrasound. At that time, marked renomegaly, generalized loss of corticomедullary distinction, and grade III pyelectasia were found and fine-needle aspirates from the left kidney confirmed lymphosarcoma. A few hours later, this patient’s clinical condition deteriorated with marked lethargy and cardiovascular compromise, and acute development of hypoechoic subcapsular or perirenal lesions was demonstrated ultrasonographically and on abdominal CT (Figure 3). Due to the Hounsfield unit number in pre- and post- contrast CT images, these lesions were interpreted as renal hemorrhage and this was confirmed at necropsy. Ultrasound guided fine-needle aspirates of the kidneys were acquired in 4 cats. In three of four cases (86%) cytological examination of the samples was diagnostic of lymphosarcoma on first analysis. In a cat in primary ultrasound, there was only one partial renal enlargement, focal disappearance between the cortical and medullary parts of the kidney and the pelvic dilatation, which were consistent with nonspecific nephropathy. A month later, persistent erythrocytosis and increase of the azotemia led to later examinations and second sonography. At this time, the enlargement of the kidney was evident, and the distance between the cortical and medullary parts of the kidney was indeterminate and there was a third grade dilatation of the pelvis. Lymphosarcoma was confirmed by biopsy with FNA of the left kidney.

TK1 and LDH activity

Significant increase of TK1 and LDH activity were observed in lymphosarcoma group compared with healthy ones. As severe activity of LDH (approximately 40 times of healthy cats range) and high activity of TK1 (about 13 times of healthy cats range) were observed in all lymphosarcoma cats.

4. Discussion

In this study, all cats that were evaluated had clinical symptoms such as lethargy and sleepiness, vomiting or diarrhea. Four cats have azotemia or increased nitrogen concentrations in the blood, which has led to further investigation by biopsy and sampling by FNA of kidneys and other tissues. Hypoechoic nodules have been commonly seen with histocytic sarcoma tumors, but hypoechoic lesions have been documented in this regard.\(^{11,12}\) Hemangiocarcinoma and carcinoma are described as nodules or hypoechoic renal masses; however, they are commonly expanded unilaterally.\(^ {13,14}\)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Lymphosarcoma Group</th>
<th>Healthy Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK1 (U/l)</td>
<td>12.08±1.05†</td>
<td>1.16 ± 0.03</td>
<td>p≤0.000</td>
</tr>
<tr>
<td>LDH (U/l)</td>
<td>98.25 ± 9.59†</td>
<td>3241.64 ± 68.82</td>
<td>p≤0.000</td>
</tr>
</tbody>
</table>

† denotes significant difference in comparison with healthy group (p < 0.01).
Figure 1. A sagittal sonogram of the left kidney in a cat with renal lymphosarcoma. Several hypoechoic nodules are observed in renal parenchymal tissue (arrows).

Figure 2. Transverse ultrasound plane of a right kidney in a cat with renal lymphosarcoma. Measured between the crosses illustrating grade II of renal pelvic dilatation (pyelectasia).

Figure 3. Computed tomography scan of a cat with renal lymphosarcoma illustrating marked bilateral renal enlargement with parenchymal enhancement, and bilateral non-enhancing regions (arrows) on the ventral aspect of the kidneys.

In this study, bilateral renal lesions were present in four cats. In humans, renal lymphoma lesions are usually bilateral and this is the opposite of carcinomas that are often unilateral.15,16 The pelvic dilatation, renal enlargement, hypoechoic parenchymal lesions, and loss of cortical and central renal fragmentation were observed in our study. These ultrasonographic features are similar to those reported in previous reports of renal lymphoma in humans and cats.17,18 There is a significant correlation between hypoechoic thickness and renal lymphoma in cat.19

In most cases, ultrasound evaluation of the kidneys revealed abnormal conditions. However, in three cats, ultrasonographic findings were partial and non-specific. Mild renomegaly in particular could be misdiagnosed or overlooked in some cats with renal lymphosarcoma as there is a great interbreed variability of renal size in cats. A method for measuring renal size with ultrasound has been described, but the degree of accuracy of this method in identifying kidney enlargement remains unknown. One cat with mild renal changes on initial ultrasound had obvious lesions on the repeated exam performed four weeks later. It is likely that in this instance an early phase of the disease was depicted on initial presentation, with tumor growth being primarily interstitial while preserving parenchymal structures and normal contour of the kidneys. This imaging-pathologic correlation has been seen in humans. Repeat ultrasound scans and fine-needle aspirations may therefore be useful in cats with mild or nonspecific renal ultrasound findings, especially if presented with signs of renal impairment. Pyelectasia was reported in all 4 cats. Mild pelvic dilation may be due to a number of causes, including intravenous fluid administration and conditions affecting glomerular filtration rate. Pyelectasia is a nonspecific finding and should be interpreted with caution.
Three of the cats with pyelectasia in the current study had received fluid therapy prior to abdominal ultrasound. However, of these 3 cats, 2 had grade III pyelectasia and one grade II. These grades are considered unlikely to be due to fluid therapy alone. Hydronephrosis is commonly documented in humans with renal lymphoma. Our findings suggest that pelvis dilation could also be an indicator of feline renal lymphosarcoma. There is little information available regarding the correlation between the severity of pyelectasia and specific diseases. Furthermore, assessment of renal pelvic dilation is not well standardized in veterinary literature. Consistent guidelines regarding the ultrasound method used to measure renal pelvis size or a scoring system to classify pyelectasia are lacking. The terms mild, moderate, and severe are subjective. We attempted to improve standardization of renal pelvis measurements in our study by introducing a grading system based on pelvic width measured in sagittal plane. In one cat, the disease progressed to bilateral renal hemorrhages that were evident on repeated ultrasound imaging. This patient had undergone fine-needle aspiration of the left kidney only. Renal hemorrhage was not considered to be iatrogenic as it was present in both kidneys. Spontaneous renal hemorrhages have not been reported in the veterinary literature for lymphosarcoma, but have been occasionally documented in humans. While CT examinations are not possible for all patients, particularly those that are unstable, this is thought to be a more sensitive and comprehensive method to assess renal abnormalities. Computed tomography can be especially helpful with the addition of contrast to assess early and late phases of renal enhancement. It can also better detect other organ or regional lymph node involvement and evaluate adjacent structures. Computed tomography is the imaging modality of choice in humans with suspected renal lymphoma. Three cats presented with hypoechoic focal lesions, consistent with that reported in the human literature. The decreased echogenicity is thought to reflect the predominant lymphocytic component as both lymph nodes and nonlymphoid organs become hypoechoic with infiltration of lymphosarcoma. Renomegaly without distortion of the contour is most common in humans with Burkitt’s lymphosarcoma, either primary or multicentric form, and is due to diffuse infiltration of neoplastic cells. In our study renomegaly was found in 3 cats, but in 2 cases it was not associated with renal deformity, suggesting a similar behavior to Burkitt’s lymphosarcoma. As healthy renal parenchyma does not contain lymphatic tissue, it has been hypothesized that the source of renal lymphosarcoma is the capsular lymphatics, the perirenal fat, or chronic inflammatory processes in the kidney with recruitment of lymphocytes and subsequent neoplastic transformation. As the cancer progresses, cells proliferate within the interstitium, between nephrons and blood vessels, resulting in expansile masses that replace the parenchyma and stretch the capsule. Asymmetrical growth can be evident in solitary masses, and rapid uniform growth of neoplastic foci results in the multiple masses frequently observed. Alternatively, multiple mass lesions could be a result of hematogenous dissemination as the smaller interlobular arteries extend into the cortical space. The role of fine-needle aspiration cytology for the evaluation of most neoplasms is well-recognized in the veterinary literature, and commonly used for diagnosis of lymphosarcoma in lymph nodes and most nonlymphoid organs. Findings from the current study also support this sampling technique for cats with renal lymphosarcoma. Increased sensitivity can be achieved by repeat sampling or immunophenotyping. In one of the cats in this study, repeated aspiration was effective in confirming lymphosarcoma. Percutaneous biopsy sampling and histopathology provided a more definitive diagnosis in cytologically inconclusive cases. No complications to renal biopsy occurred in these cats. As a result of this study, five cats with renal lymphosarcoma disease had symptoms such as kidney enlargement, hypoechoic lesions, and bilateral renal
complications. These findings suggest that the pathology of tumor spreading in cats and humans may be similar. A more comprehensive study may provide more insights than similarities. Also, based on the findings in several cats, it is possible that the kidneys affected by lymphosarcoma do not show obvious ultrasound lesions. For these cases, other advanced imaging, following of ultrasonography, and kidney tissue sampling are recommended. A biopsy for cytology through FNA was a high-performance test to detect this disease in these cats.

Acknowledgments

This study was supported by Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.

Conflict of Interests

None.

References

مطالعه ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه در گربه‌ها

چکیده

مطالعه ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه در گربه‌ها

سیامک علیزاده، کاوه عظیمزاده

گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران.

هدف

در این مطالعه، نشانه‌ها و ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه گربه‌ها به‌منظور شناسایی و تشخیص ویژگی‌های اولتراسونوگرافی بالا در گرفتگی مورد بررسی قرار گرفته و ویژگی‌های ویژه‌ای که می‌تواند در تشخیص این بیماری به‌کار گرفته شود، شناسایی شد.

طرح مطالعه

مطالعه گذشته ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه گربه‌ها به‌منظور تشخیص و شناسایی ویژگی‌های اسمیالی، رادیولوژیک و نورولوژیک اندازه‌گیری شد. در این مطالعه، نشانه‌ها و ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه گربه‌ها به‌منظور تشخیص و شناسایی ویژگی‌های اسمیالی، رادیولوژیک و نورولوژیک اندازه‌گیری شد.

نتیجه گیری

نتیجه‌گیری کلیه و کاربرد بالینی - گرفتگی هوشیارانه گرفتگی ویژگی‌های اسمیالی، رادیولوژیک و نورولوژیک اندازه‌گیری شد. در این مطالعه، نشانه‌ها و ویژگی‌های اولتراسونوگرافی تومور لنفوسارکوم کلیه گربه‌ها به‌منظور تشخیص و شناسایی ویژگی‌های اسمیالی، رادیولوژیک و نورولوژیک اندازه‌گیری شد.

واژه‌های کلیدی - گربه، لنفوسارکوم، کلیه، تومور، اولتراسونوگرافی.