Clinical Report

Malignant Fibrous Histiocytoma in a Pigeon

Amin Derakhshanfar¹*, PhD
Mohammad Mehdi Oloumi², DVSc

¹Department of Pathobiology and ²Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

Case Description- A pigeon with an abnormal mass on right wing was referred to the Veterinary Clinic of Shahid Bahonar University of Kerman.

Treatment and Outcome- The mass was removed surgically and histopathologic examination was done. Microscopic findings revealed a stori-form pattern of atypical and pleomorphic spindle-shape tumor cells with histiocytes and too many thick wall capillaries. Some bizarre cells, giant cells and lymphocytes along with collagenous stroma were seen. According to characteristic histopathologic features malignant fibrous histiocyteoma(MFH) was diagnosed.

Clinical Relevance- MFH originates from a primitive mesenchymal stem cell is most frequently seen in the dog. This is the first report of MFH in birds.

Key Words- Malignant Fibrous Histiocytoma, Pigeon.
Case Description

A pigeon with a large (3×4 cm) fleshy mass on right, medial side of the ulna and radius was referred to the Veterinary Clinic of Shahid Bahonar University of Kerman. On cut surface, a white, soft tissue was observed. The cavity in the center of the mass was occupied with serosanguineous fluid. The non-encapsulated but circumscribed mass was covered with skin. Because of good body condition of the bird, radical resection of the mass was selected.

Treatment and Outcome

The bird was anesthetized with a mixture of halothane-oxygen, administered via a head chamber. The fluffs and withers of the area were removed and the region was surgically prepared. The mass was excised by an electro-surgical unit. The bleeder were stopped by electro-coagulation or ligation. Since there was a large skin loss, the wound was left open and a dressing was applied over the area. The dressing was changed every day for 7 days, when the wound was left uncovered. The bird was discharged on day 14, when the wound was acceptably diminished in size. For histopathological evaluation, some parts of the resected mass were transferred to 10% buffered formalin. After fixation, tissue slides were prepared via routine procedures and examined under light microscope.

Microscopic examination showed a stori-form pattern of elongated, spindle-shaped tumor cells. Many of the tumor cells were pleomorphic and atypical, but mitotic figures were rare. There were microcystic spaces filled mainly with lymphocytes, heterophils, and RBCs. The tumor was highly vascular. Too many capillaries with thick wall and hyperplastic and hypertrophic endothelial cells were observed. Some of capillaries' lumen were occluded. Some bizarre cells were seen among the densely packed tumor cells with little intercellular substance. Sometimes distinguishable hyalinized ground substance was observed between tumor cells. The anaplastic cells possessed vesicular nucleus with prominent nuclei. Giant cell formation in some parts of the tumor was obvious.
Fibrous element as collagenous stroma along with macrophage-like cells (xanthoma cells or histiocytes) and spherical, ovoid, and spindle-shape fibrocytes have made the principal part of the tumor (fig. 1-5). Based on the aforementioned characteristic histopathological findings, MFH was diagnosed.

Discussion

Malignant fibrous histiocytoma (MFH) originates from a primitive mesenchymal stem cell, fibroblastoid cell and fibroblasts. Histiocytes are, according to the literature in a small amount constituents of MFH and are reactive cells, without any meaning. Histiocytes are not a neoplastic component. MFH represents a primitive phenotype or pleomorphic sarcoma which may differentiate in one or more directions. In human over 15% of malignant tumors of the soft tissue are malignant fibrous histiocytoma. This tumor is most frequently seen in the dog, but rarely in cow and cat. Based on the author’s knowledge, MFH was not reported in birds previously. Human MFH has been divided into subtypes based on the pattern and predominance of the cell types: storiform-pleomophic, giant cell, inflammatory, and myxoid. Only the first three types have been found with consistency in domestic animals. In this case, the mixture of storiform-pleomophic and inflammatory subtypes of MFH in a pigeon was confirmed.

Trauma and chronic inflammation may be predisposing factors for development of this neoplasia in cattle. Some authors believe that giant cell variant of MFH could be seen only in cats. Ultrastructural studies revealed the tumor cells in MFH to be characteristic fibroblasts with or without cytoplasmic filaments consistent with actin. However, many of these sarcomas seem to have a significant myofibroblast component and a mild or moderate T cell infiltration but the precise cell
lineage is still uncertain. Complete excision can be curative for solitary dermal or subcutaneous masses. There is no recognized successful treatment for multicentric MFH.

Acknowledgment

Authors would like to thank Mr. Bamorravat and Mr. Hasanzadeh for their technical assistance.

References

چکیده:

هیستپیوستومای فيبروزه بدخم در یک گیوش

امین درخشانفر، محمد مهدی علومی

گروه پاتوبیولوژی، گروه علوم درمانگاهی، دانشگاه دامپزشکی، دانشگاه شهید باهنر کرمان، کرمان، ایران.

پیشینه: گیوشی با یک توده غیر طبیعی بروی بال سمت راست به کلینیک دامپزشکی دانشگاه شهید باهنر کرمان ارجاع گشت.

درمان و نتیجه‌ان: پس از برداشت توده به روش جراحی مطالعات هیستپیوستومایی صورت پذیرفت. مشاهدات میکروسکوپیک حضور سلول های تووموری دوکی شکل، چند شکلی و غیر تیپیک را در یک الگوی موجی همراه با هیستپیوست های مشخص و تعداد فراوانی از میریگ رای دارای دیواره ضخیم آشکار ساخت. تعادل سلول بند شکل و واحدهای دیو سلول و نیز لفاسیت در استرومای کلاژنی به چشم می خورد. بر اساس یافته های هیستپیوستومایی مشخص، تشخیص داده شد.

کاربرد بالینی: هیستپیوستومای فيبروزه بدخم (MFH) از یک سلول یا ه و تمامی نیافته مرتبطی مشاوه و هم‌وقت در سگ می شود. این اولین گزارش از وقوع MFH در پرندگان است. 

کلید واژگان: هیستپیوستومای فيبروزه بدخم، گیوش.